Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical absorption of intersubband transitions in In0.3Ga0.7As/GaAs multiple quantum dots

Identifieur interne : 00C482 ( Main/Repository ); précédent : 00C481; suivant : 00C483

Optical absorption of intersubband transitions in In0.3Ga0.7As/GaAs multiple quantum dots

Auteurs : RBID : Pascal:03-0186642

Descripteurs français

English descriptors

Abstract

Fourier-transform infrared spectroscopy technique was employed to investigate the optical absorption coefficient of intersubband transitions in Si-doped In0.3Ga0.7As/GaAs multiple quantum dot structures. Waveguides with 45° polished facets were fabricated from molecular beam epitaxy grown wafers with different quantum dot size. The measured maximum optical absorption coefficient was found to be in the order of 1.10×104 cm-3. The peak position energy of the intersubband transition was observed to shift toward lower energy when the quantum dot size is increased as expected. The photoluminescence spectra were also measured for different samples with different quantum dot size. The internal quantum efficiency was estimated to be in the order of 58% for a sample with 40 periods of 6 nm dot size. © 2003 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0186642

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical absorption of intersubband transitions in In
<sub>0.3</sub>
Ga
<sub>0.7</sub>
As/GaAs multiple quantum dots</title>
<author>
<name sortKey="Pattada, B" uniqKey="Pattada B">B. Pattada</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jiayu" uniqKey="Chen J">Jiayu Chen</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Qiaoying" uniqKey="Zhou Q">Qiaoying Zhou</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Manasreh, M O" uniqKey="Manasreh M">M. O. Manasreh</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hussein, M L" uniqKey="Hussein M">M. L. Hussein</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Department of Physics, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ma, W" uniqKey="Ma W">W. Ma</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Department of Physics, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Salamo, G J" uniqKey="Salamo G">G. J. Salamo</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arkansas</region>
</placeName>
<wicri:cityArea>Department of Physics, University of Arkansas, Fayetteville</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0186642</idno>
<date when="2003-04-14">2003-04-14</date>
<idno type="stanalyst">PASCAL 03-0186642 AIP</idno>
<idno type="RBID">Pascal:03-0186642</idno>
<idno type="wicri:Area/Main/Corpus">00D831</idno>
<idno type="wicri:Area/Main/Repository">00C482</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Experimental study</term>
<term>Fourier transform spectra</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Infrared spectra</term>
<term>Interface states</term>
<term>Molecular beam epitaxy</term>
<term>Photoluminescence</term>
<term>Semiconductor quantum dots</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7867H</term>
<term>7855C</term>
<term>7321L</term>
<term>7820C</term>
<term>7830F</term>
<term>8115H</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Point quantique semiconducteur</term>
<term>Etat interface</term>
<term>Spectre transformée Fourier</term>
<term>Spectre IR</term>
<term>Coefficient absorption</term>
<term>Epitaxie jet moléculaire</term>
<term>Photoluminescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fourier-transform infrared spectroscopy technique was employed to investigate the optical absorption coefficient of intersubband transitions in Si-doped In
<sub>0.3</sub>
Ga
<sub>0.7</sub>
As/GaAs multiple quantum dot structures. Waveguides with 45° polished facets were fabricated from molecular beam epitaxy grown wafers with different quantum dot size. The measured maximum optical absorption coefficient was found to be in the order of 1.10×10
<sup>4</sup>
cm
<sup>-3</sup>
. The peak position energy of the intersubband transition was observed to shift toward lower energy when the quantum dot size is increased as expected. The photoluminescence spectra were also measured for different samples with different quantum dot size. The internal quantum efficiency was estimated to be in the order of 58% for a sample with 40 periods of 6 nm dot size. © 2003 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>82</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical absorption of intersubband transitions in In
<sub>0.3</sub>
Ga
<sub>0.7</sub>
As/GaAs multiple quantum dots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PATTADA (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHEN (Jiayu)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHOU (Qiaoying)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MANASREH (M. O.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HUSSEIN (M. L.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MA (W.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SALAMO (G. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering, Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>2509-2511</s1>
</fA20>
<fA21>
<s1>2003-04-14</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0186642</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Fourier-transform infrared spectroscopy technique was employed to investigate the optical absorption coefficient of intersubband transitions in Si-doped In
<sub>0.3</sub>
Ga
<sub>0.7</sub>
As/GaAs multiple quantum dot structures. Waveguides with 45° polished facets were fabricated from molecular beam epitaxy grown wafers with different quantum dot size. The measured maximum optical absorption coefficient was found to be in the order of 1.10×10
<sup>4</sup>
cm
<sup>-3</sup>
. The peak position energy of the intersubband transition was observed to shift toward lower energy when the quantum dot size is increased as expected. The photoluminescence spectra were also measured for different samples with different quantum dot size. The internal quantum efficiency was estimated to be in the order of 58% for a sample with 40 periods of 6 nm dot size. © 2003 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C21L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H30F</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7867H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7321L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7820C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7830F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etat interface</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Interface states</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Spectre transformée Fourier</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Fourier transform spectra</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Spectre IR</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Infrared spectra</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fN21>
<s1>104</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0314M000183</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C482 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00C482 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0186642
   |texte=   Optical absorption of intersubband transitions in In0.3Ga0.7As/GaAs multiple quantum dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024